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Thanks to the help of the coauthors of this erratum (RH & CML), it has been possible to 

identify and correct an error in the bifurcation analysis of the first author (JWH) for the 

constrained layer problems addressed in the paper cited above.  The error is not obvious, and the 

results for this problem are anticipated to be important for subsequent work on electro-

mechanical instabilities.  Therefore, this note briefly presents the corrected results along with 

discussion to make it less likely the error will be repeated.  The error in the bifurcation analysis 

propagates throughout the post-bifurcation and imperfection-sensitivity analysis in the paper 

cited above giving rise to additional changes.  Corrections to the post-buckling behavior are 

made in the Supplementary Materials accompanying this erratum with one figure summarizing 

selected results included below. 

The said paper (Hutchinson, 2021) considered strictly incompressible neo-Hookean 

materials (and the Gent extension).  An infinite layer is subject to an equi-biaxial pre-stretch, 0λ , 

prior to being bonded to a rigid substrate (see Fig. 1a).  In the pre-bifurcation state the layer is 

uniform with thickness h .  In Problem I, the top and bottom surfaces of layer are conducting 

with a voltage 0V  imposed across them.  The layer is dielectric with permittivity ε .  In Problem 

II, a voltage difference 0V  is imposed between a rigid conducting electrode located a distance h

above the conducting top surface of the layer.  In II, the medium between the conducting 

surfaces (vacuum, gas or liquid) has permittivityε .  In the notation and nondimensionalization of 

the paper, with 1 2( , ) ( , )x y k x x= , 2 /k π= ℓ  and ℓ  as the wavelength, the periodic displacements 

of the plane strain bifurcation modes of the layer have the separated form: 

1 2( , ) ( ( ) sin( ), ( ) cos( ))u u U y kx V y kx= ℓ . The corrected functional governing bifurcation for the

Gent generalization of the incompressible neo-Hookean material is 

( ) ( ) ( ) ( )
0 2

2 2 2 4 2 2 4 2 42
0 0 0 0 02

0 0

2

1 2
2

2

2
cotanh(y ) (0)

2

By
L

B

U V U V UV U V dy
J

V

π
λ λ λ λ λ

µ ω ω

π πγ

µ

− − −

−

 ∆Ψ ′′ ′ ′= + + + − + + 
 

 
− Ω − 

 


ℓ

ℓ

 (1) 

with µ  as the ground state shear modulus, γ  as the surface energy,  
L

J  as the Gent stiffening 

parameter, ( ) ( ) /d dy′ = , 2 4

0 0 01 (2 3) /
L

Jω λ λ −= − + −  and 2 /
B

y hπ= ℓ .  The dimensionless 
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eigenvalue parameter determining the voltage at bifurcation is 2

0( / )( / )V hε µΩ = .  The 

incompressibility constraint, 0V U′ + = , must be enforced using a Lagrange multiplier.  In the 

limit 
L

J → ∞  the neo-Hookean material is obtained.  The functional is applicable to the 

bifurcation in both Problems I and II.  

 The error in the bifurcation functionals listed in Hutchinson (2021), i.e., (3.4), (4.1) and 

(4.4), is a single term uniquely identified by the factor τ Ω  (with 1τ =  for I and 1τ = −  for II).  

Although the form is somewhat different, (1) is equivalent to the functional (4.4) in the original 

paper when the term τΩ  is deleted. The terms in (1) comprise all the quadratic changes in the 

elastic, electro-static and surface energies making up the free energy of the system.  The term in 

the original paper involving τ Ω  arises from the hydrostatic stress in the pre-bifurcation state of 

the layer. It can be eliminated from the integral over the layer and expressed as a surface 

contribution to the energy functional, as it has in (4.4) of the paper.  The term is not a 

contribution to the strain energy in layer, which depends on the deformation but not the 

hydrostatic stress.  The surface contribution of this term is not compatible with the electro-static 

traction changes generated by the bifurcation displacements.   The validity of this argument did 

not come directly.  We became convinced there was an error in the critical voltage for the 

incompressible material when independent analyses first conducted by RH and CML for 

bifurcation in Problem I for compressible neo-Hookean materials clearly approached a limit 

different from that given in the paper when calculations for nearly incompressible materials were 

carried out.  Here we will provide the results from one such calculation focusing on Problem I 

with no pre-stretch ( 0 1λ = ) and for the short wavelength limit valid when / hℓ  is sufficiently 

small.  

 The analysis described next employs a version of an isotropic, finite strain compressible 

material whose incompressible limit coincides with the neo-Hookean material, as described by 

Boyce and Arruda (1990), c.f., their equations (35) and (36). The compressible analysis is carried 

out for Problem I in the reference configuration prior to the application of the voltage 0V .  

Coordinates in the reference configuration are denoted ��, and those in the current configuration 

are denoted ��. The deformation gradient is ��� = �	

��� = ��,�. The nominal electric field is �� =

��
��� = �,�, where � is the electric potential. The true electric field is �� = ��

�	

= �,� = ��

���
���
�	


=
�������. The form of the free energy used in this work is, 

 � = �
� ������� − 3� − � ln � + !

� "� − 1$� − %
� ��&����'����&�' (2) 

Here, � and ( are the usual Lamé parameters when the material is subjected to infinitesimal 

deformation, ) is the dielectric permittivity, and � = det����� is the determinant of the 

deformation gradient.  The analysis was also performed for a second compressible form shown 



in Fig. 1b, where the bulk modulus κ  is related to the Lamé parameters as, κ λ µ= +2 /3 . We 

present the details for the form in Eq. (2) because of its simpler analytic solution. The governing 

equations of equilibrium and charge balance, i.e. Gauss' law, are given as, 

 *��,� = 0   and   ,�,� = 0 (3) 

where *�� = �-
�.
�

 is the first Piola-Kirchhoff stress, and ,� = − �-
�/� is the nominal electric 

displacement.  

We look for perturbed solutions about a homogeneous state given by, 

 �� = 0���� + 120���� + 34�"��, ��$ (4) 

 � = 56
7 "�� + ℎ$ + 39"��, ��$  (5) 

where ℎ is the film thickness in the reference state, :2 is the voltage applied to the top surface at 

 �� = 0, 12 is the film strain in the  �� direction at the bifurcation voltage, 34�"��, ��$ is the 

perturbed displacement field, 39"��, ��$ is the perturbed electric potential field, and 3 is a small 

parameter. The homogeneous film strain satisfies the equation, 

  
%
� <56

7 =� + (12"1 + 12$� + �"1 + 12$> − �"1 + 12$ = 0 (6) 

The equilibrium equations and Gauss' law are expanded to order 3� and yield equations governing 

the perturbed fields, 

  
56

"�?@6$7 4�,�� + 56
"�?@6$A7 4�,�� − 9,�� − �

"�?@6$B 9,�� = 0 (7) 

  C( + � + �
"�?@6$BD 4�,�� + �4�,�� + C"1 + 12$( + �

�?@6D 4�,�� = 0 (8) 

  E"1 + 12$�( + 2�G4�,�� + �4�,�� + C"1 + 12$( + �
�?@6D 4�,�� = 0 (9) 

These equations are also subject to the voltage and traction-free boundary conditions on the 

surface of the film, 

   9"��, 0$ = 0 (10) 

   
%56

7"�?@6$ 9,�"��, 0$ + C �
�?@6 − (12 − %56B

�7"�?@6$BD 4�,�"��, 0$+�4�,�"��, 0$ = 0 (11) 
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 (12) 



Taking the wavenumber of the wrinkling oscillations to be unity, and the wavelength of 

the oscillations to be much smaller than ℎ, the solution to these equations is, 

   9"��, ��$ = 56
7"�?@6$ H4�"��, ��$ − I�"1 − J$expE"1 + 12$��G cos"��$N (13) 

   4�"��, ��$ = I�HexpE��G − JexpEO��GN cos"��$ (14) 

   4�"��, ��$ = −I� P �
�?@6 expE��G − Q"�?@6$

R expEO��GS sin"��$ (15) 

  O = "1 + 12$T ��?!"�?@6$B
�?"!?�$"�?@6$B (16) 

   J = %<U6
V =B?�"�?@6$E@6"�?@6$!���G

%<U6
V =B?�"�?@6$W@6"!���$?@6B"!��$���X

 (17) 

The critical value for 
0
/V h  and the associated value for A  result from an eigenvalue problem 

required to satisfy the boundary conditions with a non-trivial solution. 

  
56
7 = T�Y�√YB�[\]

�\  (18) 

  ^ = %BW"�?@6$B�RX
["�?@6$B  (19) 

   _ = %W"�?@6$BE@6"�?@6$!���G�R@6"�?@6$!?R��?[@6?[@6B?@6A��X
�?@6  (20) 

   ` = "1 + 12$�E12"1 + 12$( − 2�G� − OE12"1 + 12$( − "2 + 212 + 12�$�G� (21) 

          Equation (18) provides :2/ℎ in terms of 12, which then casts (6) as a single nonlinear 

algebraic equation governing 12. In the limit of incompressible behavior ( → ∞, 12 → 0, O → 1, 

^ → 0, _ → 2)�, ` → −4��, and the solution for :2/ℎ becomes, 

   
56
7 = T�]

Y = T��
%   as ( → ∞ (22) 

The plot of 0/ /V hε µ  as a function of /λ µ  is given in Fig. 1b showing the approach to the 

limit 2 .  A second curve (dashed) has been included in Fig. 1b for another nonlinear isotropic 

elastic material whose incompressible limit is also the neo-Hookean material.  Although the 

dependence on compressibility is different, the second model has the same limiting critical voltage 

as the first model. The free energy for the layer of second material is shown in the figure where 

2 / 3κ λ µ= +  is the bulk modulus. 



In terms of the eigenvalue parameter introduced earlier, the incompressible limit is 

simply 2Ω =  or 0/ / 2V hε µ = .  The incorrect result obtained in the original paper is 

0/ / 1.287V hε µ = .  The correct result was first obtained by Huang (2005) who modeled the 

layer as an isotropic linearly elastic compressible material and took the result to the 

incompressible limit. Our subsequent work analyzing the non-objective linear elastic model of 

the layer within the finite strain context leads to the same incorrect result 0/ / 1.287V hε µ =  as 

in Hutchinson (2021).  The inconsistency of the results for the linear elastic layer almost 

certainly stems from the fact that the linear elastic model is not objective in the finite strain 

context, whereas the two models used to generate the results in Fig. 1b are objective. 

 

 

Fig. 1 a) Problems I and II.  b) The dependence of the critical dimensionless voltage on the ratio 

of the two Lamé parameters showing the limit for Problem I as the material becomes 

incompressible for the material model discussed in the text (solid line) and for a second isotropic 

material model (dashed line and 2 / 3κ λ µ= + ) which also approaches the neo-Hookean model in 

the incompressible limit.   
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 Results for the incompressible neo-Hookean layer from the corrected bifurcation 

functional (1) accounting for interaction with the bottom of the layer are presented in Fig. 2a for 

the case of no pre-stretch and several levels of surface energy measured by / hγ µ .  The lowest 

curve for a layer with no surface energy shows that the dimensionless critical voltage attains the 

short wavelength limit, 2Ω = , for all wavelengths satisfying / 1h <ℓ .  This plot also reveals 

the strong effect of the surface energy on the critical voltage at short wavelengths.  Fig. 2b 

presents curves of the dimensionless critical voltage as a function of pre-stretch in the short 

wavelength limit for several values of the dimensionless surface energy, now as /γ µℓ , 

including the limit with 0γ = .  An exact relatively simple analytical formula can be obtained for 

the short wavelength limit: 
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Fig. 2 Dimensionless voltage at bifurcation as dependent on wavelength, surface energy and pre-

stretch for the incompressible neo-Hookean layer.  a) As dependent on wavelength and surface 

energy with no pre-stretch. b) As dependent on pre-stretch and surface energy in the short 

wavelength limit when / 1h <ℓ . 

 Stiffening greater than that predicted by the neo-Hookean material is commonly observed 

for some elastomers, which is expected to impact the effect of pre-stretch.  The Gent 

generalization of the neo-Hookean material captures stiffening with a single additional parameter 

L
J , c.f., discussion in Section 6 and eq. (6.1) of the original paper.  Fig. 3 displays the effect of 

the Gent parameter on the critical dimensionless voltage as dependent on pre-stretch in the short 

wavelength limit ( / 1h <ℓ ) for layers with no surface energy computed using the corrected 

functional (1).  The results in Fig. 2 and 3 apply to both Problems I & II. 



 The corrected bifurcation results for the critical voltage for the pre-stretched neo-

Hookean material in Problem I are in much better agreement with the creasing experiments of 

Wang et al. (2011) than the previous erroneous ones.  At a pre-stretch 0 3λ = , the experimental 

critical voltages have a scatter of about 15% with the corrected bifurcation voltage falling in the 

center of the scatter.  Because creasing is an unstable phenomenon and sensitive to small 

imperfections, one would expect the experimental data to consistently fall somewhat below the 

bifurcation prediction.  This suggests that some stiffening effect such as that captured by the 

Gent model may be at play at the larger pre-stretches.  In addition, the inconsistency noted in 

Section 6 of Hutchinson (2021) concerning the existing numerical prediction of the crease 

threshold for pre-stretched neo-Hookean materials still stands because that prediction falls above 

the corrected bifurcation result when 0 2λ ≥ . 

 

 

Fig. 3 The influence of the Gent stiffening parameter, 
L

J , on the critical dimensionless voltage 

as a function of pre-stretch in the short wavelength limit in the absence of surface energy. 

 The error in the bifurcation analysis carries into the post-bifurcation analysis and has a 

effect on the role of pre-stretch.  The revision of the post-bifurcation analysis is presented in the 

Supplementary Materials attached to the errata.  Here, we include Fig. 4 for Problem I which 

reveals that pre-stretch tends to reduce the level of instability at bifurcation.  Let 0

C
V  be the 

voltage at bifurcation and 0V  be the voltage in the initial post-bifurcation regime. The initial 

post-bifurcation analysis determines the nonlinear coupling of the shortwave length modes and 

generates the lowest order dependence of quantities of interest on the eigenmodal mode 

amplitudes.  Fig. 4a plots the lowest order asymptotic dependence of 0 0/ C
V V  on the maximum 



downward deflection of the layer normalized by ℓ , 2 (0,0) /u− ℓ , for seven values of the pre-

stretch ranging from no pre-stretch to 0 2.5λ = .  In the uniform state the capacitance of a section 

of the layer of thickness h , length ℓ  and unit depth is 0 /C hε= ℓ .  The increased capacitance of 

this section in the bifurcation state is plotted in Fig. 4b for the same values of pre-stretch.  The 

primary insight into the effect of pre-stretch on the level of instability is given by Fig. 4c where 

the voltage is plotted against the electrical charge in the section, c .  For the uniform layer, 

0 0c C V= , and the value at bifurcation is 0 0

C

C
c C V= . With no pre-stretch, or relatively small pre-

stretch, bifurcation is highly unstable under either prescribed voltage or charge.  For increased 

levels pre-stretch above about 0 2λ =  the initial post-bifurcation response falls less dramatically.  

It must be emphasized that these results are the result of an asymptotic analysis perturbing about 

the bifurcation point, and their range of applicability into the post-bifurcation regime is 

unknown.  The corresponding results for Problem II are presented in the revised Supplementary 

Materials.  A detailed numerical analysis of the post-bifurcation behavior is underway which is 

not subject to the limitations of the current asymptotic perturbation analysis. 

 

Fig. 4 The influence of pre-stretch, 0λ , on the initial post-bifurcation behavior of the constrained 

incompressible layer for Problem I.  a) Voltage versus amplitude of the surface bifurcation 

deflection. b) Ratio of the capacitance in the initial post-bifurcation regime to the capacitance of 

the uniform layer. c) Voltage versus electrical charge in the initial post-bifurcation regime.  

These plots were computed using 6 modes; plots b) and c) were computed with / 1h =ℓ . 
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These Supporting Materials include corrections to the original paper (Hutchinson, 2021) which 

did not appear in the Errata and changes in the original Supporting Materials which follow from 

the error in the bifurcation analysis, and which also did not appear in the brief Errata.  The 

equation and figure numbers in the Errata Supporting Materials will be prefaced by the initials, 

ESM, numbers in the original Supporting Materials by the initials, SM, in the Errata itself by the 

initial, E.  The equations and figures in the original paper (Hutchinson, 2021) are listed without 

any initial designation.  The references cited in this document are those listed at the end of the 

original paper with a few additional references provided at the end of this document.  We begin 

by filling in some details of the bifurcation analysis of the finite thickness layers, including 

discussion of the short wavelength limit, anticipating results from the second part of this 

document on development of the free energy functional and the post-bifurcation analysis for the 

short wavelength limit.   

Bifurcation (linear stability) analysis including pre-stretch and surface energy 

 We begin with the quadratic plane strain bifurcation functional written for the finite 

thickness neo-Hookean layer with pre-stretch 0λ .   Here, the dimensionless coordinates are 

1 2( , ) ( , )x y kx kx= , and the dimensionless displacements are taken to be the dimensional ones 

divided by 2 / kπ=ℓ , i.e., 1 2( / , / )u uℓ ℓ   becoming 1 2( , )u u .  Recall that the horizontal and 

vertical displacements of a material point at 1 2( , )x x  in the pre-stretched, pre-bifurcation, state, 

( )1 1 2 2 1 2( , ), ( , )u x x u x x , are employed.  The corrected dimensionless quadratic bifurcation function 

for Problems I and II for one periodic section per unit depth in the 3x  direction is 
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     (ESM-1) 

with 2 /
B

y hπ= ℓ  and  1

2 ( ,0) cos( )
j

v u x jx dx
π

π
π −

−
=  .   The last contribution from the electro-

static forces will be derived below.  The first order incompressibility condition is enforced with 

the Lagrangian multiplier, q∆ , which is dimensionless with period ℓ . 

 One can proceed in several ways.  The procedure used here is as follows.  In the first 

step, generate the linear system of pde’s and boundary conditions that render 2∆Ψ  stationary 

subject to 1 2( , ) ( , ) 0
B B

u x y u x y− = − = .  The details of this step are omitted here but we use the 

fact that these pde’s, boundary conditions and the periodicity requirement admit separated 

solutions of the form 

 1 2( ) sin , ( ) cos , ( ) cosu U y x u V y x q Q y x= = ∆ =     (ESM-2) 

Substitution of these back into (ESM-1) and integrating with respect to x  gives 
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with  cotanh( ) 2 / ( )
B

y hπγ µΓ = Ω − ℓ  and  ( ) ( ) /d dy′ = .  Rendering 2∆Ψ  stationary with 

respect to U , V  and Q  subject to ( ) 0
B

U y− =  and ( ) 0
B

V y− =  requires  
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together with the boundary conditions 
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 If 0 1λ = , the linearly independent solutions to the 4th order system (ESM-4) are 
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If  0 1λ > , the solutions are 
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     (ESM-7) 

 Two methods to generate solutions to the eigenvalue problem for the finite thickness 

layer are outlined below.  For each method, first express 3c  and  4c  in terms of  1c  and  2c  by 

enforcing the boundary conditions on 
B

y y= −  in (ESM-5).  Then, express the two boundary 

conditions on 0y =  in (ESM-5) which provides 2 linear homogeneous equations for 1c  and 2c . 

The requirement that the determinant of this system vanish is the desired condition for the 

eigenvalues Ω  or, equivalently, Γ .  In addition to the pre-stretch, 0λ , and dimensionless surface 

energy, / ( / )( / )h hγ µ γ µ=ℓ ℓ , the only parameter is the dimensionless layer thickness 

2 /
B

y hπ= ℓ .  The critical (lowest) eigenvalue is minimized with respect to the dimensionless 

mode number / / 2h hk π=ℓ , which as seen in the Fig E2a occurs as the short wavelength limit 

when the surface energy is zero.  Alternatively, one can evaluate 2

2 / µ∆Ψ ℓ  in (ESM-3) in terms 

of 1c  and  2c  using numerical integration for any specified set of parameters and then evaluate 

Ω  or Γ  from the boundary conditions on the top surface.  Considering all possible mode 

numbers, the critical eigenvalue is the lowest value of Ω  for which 2

2 / 0µ∆Ψ =ℓ .  These two 



methods are readily implemented and yield results of high accuracy using standard numerical 

algorithms with double precision arithmetic.  

It is difficult to produce uncomplicated closed form formulas by carrying out either of the 

above procedures analytically when the critical mode interacts with the bottom of the layer.  

However, when the critical eigenvalue lies within the short wavelength limit, an exact and simple 

analytical formula for the lowest eigenvalue and associated eigenmodes can be obtained.  In the 

short wavelength limit 2 /
B

y hπ= → ∞ℓ  in (ESM-3) - (ESM-5) with 3 4 0c c= =  and 

cotanh(y ) 1
B

= .  The boundary conditions on 0y =  in (ESM-5) provide the eigenvalue 

condition.  These can be reduced analytically to the give the formula for the critical eigenvalue, 

(ESM-23).  The associated eigenmodes normalized such that (0) 1V =  are 
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for 0 1λ >  with 3
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In carrying out the bifurcation analysis for other constitutive models, such as the Gent 

model, using the methods employed in this paper, one must derive the quadratic bifurcation 

functional for the specific model.  We have used both a direct approach and Hill’s (1961) 

alternative approach to bifurcation in finitely strained solid bodies, which is similar in some 

respects to that of Biot (1965).  These approaches lead to the following quadratic bifurcation 

functional for the Gent material: 
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Here, 2 2

0 0 01 (2 3) /
L

Jω λ λ −= − + −  and 
L

J  is the Gent stiffening parameter with the full energy 

density defined in (6.1). In the limit 
L

J → ∞  for the neo-Hookean material (c.f., ESM-1) the 

quadratic terms for the elastic energy constitute the entire elastic energy subject to the full exact 

incompressibility constraint: 1, 2, 1, 2, 1, 2, 0
x y x y y x

u u u u u u+ + − = .  Terms in the elastic energy smaller 

than quadratic have been neglected for the Gent material. 

The electro-static energy changes for deformations of period ℓ 

In this section, we fill in some of the omitted steps, simplifying and correcting the 

presentation of Section 3.2 and the Supplementary Materials in the original paper. First consider 

Problem I. Application of Green’s theorem to (3.6), transforms it to an integral along the 

boundary C , 

 
( )

( )

/2
2 2

0 , 1
/2

/2 /2
2 2 2

0 , 1 0 ,1 ,2 1
/2 /2

1
2 1
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1 1
1

2 2

electric i i

i i

U V n Y dx

V n Y dx V Y Y dx

ε ϕ ϕϕ

ε ϕϕ ε ϕ ϕ

−

− −

′ ′∆ = + +

′ ′′ ′= + = −



 

ℓ

ℓ

ℓ ℓ

ℓ ℓ

      (ESM-8) 

Here, 
i

n  is the unit normal to C  with components 2

1
/ 1n Y Y′ ′= − +  and 2

2
1/ 1n Y ′= +  where 

1
/Y dY dx′ =  (see Fig. 6 for Problem I).  In applying Green’s theorem, the contributions from the 

vertical sides of the section in Fig. 3 cancel each other by periodicity and the contribution along 

the bottom of the layer vanishes because 0ϕ = .  Because Yϕ = −  on C, 

/2 /2

1 1 1
/2 /2

( ) 0dx Y x dxϕ
− −

= − = 
ℓ ℓ

ℓ ℓ

. 

 The next step is to solve for the change in the potential ϕ  as dependent on the shape 

change Y  and to evaluate (ESM-8).  The stability analysis conducted in this paper requires 

electric
U∆  to be known to order 3Y , and we will neglect contributions of order 4Y  and smaller.   

 Using a Fourier series, 1 2 2 1

0

( , ) ( ) cos( )
j

j

x x f x jkxϕ
∞

=

= , with 2 /k π= ℓ  (consistent with 

symmetry about 1 0x = ), one finds the solution to 2
0ϕ∇ =  with Yϕ = −  on C  to be 



  2

1 2 0 2 1

1

( , ) ( / 1) cos( )jkx

j

j

x x x h e jkxϕ ϕ ϕ
∞

=

= + +      (ESM-10) 

with the coefficients 
j

ϕ  required to satisfy 

 ( ) 1( )

0 1 1 1

1

( ) / 1 cos( ) ( )jkY x

j

j

Y x h e jkx Y xϕ ϕ
∞

=

+ + = −     (ESM-11) 

(The solution above must be modified when the wavelength is not sufficiently short to satisfy the 

condition 0ϕ =  on 2x h= − . From this point on, we limit attention to the short wavelength limit 

for which / hℓ  is sufficiently small such that terms like 
2 /h

e
π− ℓ

 can be neglected, i.e., the 

undulations of the surface do not interact with the bottom of the layer.  To obtain the electro-

static term, 2
cotanh( ) (0)

B
y VΩ , in the bifurcation functional (E-1) when the wavelength is not 

short, one proceeds by producing the solution above that satisfies 0ϕ =  at the bottom of the 

layer.  This extension is straightforward for the bifurcation problem because the Fourier 

coefficients are only needed to order Y .) 

 The solution for the Fourier coefficients from (ESM-10b) to order 2Y , required to obtain 

electric
U∆  to order 3Y , is 

 

2

0

1

1 1

2

, 1

j

j

j j jmi m i

m i

k
jY

k
Y mA Y Y j

ϕ

ϕ
π

∞

=

∞ ∞

= =

=

= − + ≥
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where 
/2

) 1
/2

(2 / ) ( )
j

Y Y x dx
−

= 
ℓ

ℓ

ℓ  and  

( )

cos cos cos

( ) ( ) ( ) ( )
2

jmiA jx mx ix dx

j m i j m i j m i j m i

π

π

π
α α α α

−
=

= + + + − + + + − + + + −


 

with ( ) 1jα =  if 0j =  and ( ) 0jα =  if 0j ≠ .  Note that 
jmi mji imj

A A A= = .   



The results needed to evaluate 
electric

U∆ in (ESM-8) to order 3Y  have been obtained.  The 

result is 

( )
2

20

1 1 1 1

1
( )

2
electrix j jmi jmi j m i

j j m i

V
U jY k j j m A miB Y Y Y

h
ε π

∞ ∞ ∞ ∞

= = = =

  
∆ = + − −  

   
   (ESM-13) 

where  

( )

cos sin sin

( ) ( ) ( ) ( )
2

jmiB jx mx ix dx

j m i j m i j m i j m i

π

π

π
α α α α

−
=

= + − + − + − + + − − + +


 

In general, 
jni mji

B B≠ , but 
jmi jim

B B= . 

 As noted in Section (3.3) of the original paper, the last step is transforming (ESM-13) 

into the surface shape expressed in terms of the displacement components of the surface, 

1( ,0)
i

u x , whose Fourier series are 1 1 1

1

( ) sin
j

j

u u jkx
∞

=

=  and 2 2 1

1

( ) cos
j

j

u u jkx
∞

=

=  with 

/2

1 1 1 1 1
/2

( ) (2 / ) ( ,0)sin( )
j

u u x jkx dx
−

= 
ℓ

ℓ

ℓ  and  
/2

2 2 1 1 1
/2

( ) (2 / ) ( ,0)cos( )
j

u u x jkx dx
−

= 
ℓ

ℓ

ℓ  

To the order of accuracy required in this investigation, the relation 1 2 1( ) ( ,0)Y x u x=  with 

1 1 1 1( ,0)x x u x= +  can be replaced by 1 2 1 1 1 2 1 1( ) ( ,0) ( ,0) ( ,0) /Y x u x u x du x dx= − , which, in turn, 

provides 

 2 1 2 2 2 2

1 1 1 1

1
( ) ( ) ( ) ( ) ( ) ( )

1
j j jmi m i j jmi m i

m i m i

k k p
Y u iB u u u iB u u

pπ π

∞ ∞ ∞ ∞

= = = =

−
= + = −

+
   

where the connection 1 2( ) [( 1) / ( 1)]( )
j j

u p p u= − − +  with 3

0p λ=  (which will be derived later) 

has been to obtain the last expression.  Applying this transformation to (ESM-13) and neglecting 

terms of order 
4

u , gives 
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The presence of the factor τ  will be explained shortly; for Problem I, 1τ = . 

 The full free energy functional for the system to order 
3

u  consisting of the contributions 

from the elastic deformation and the electro-static forces for prescribed voltage 0V  can now be 

presented.  We do so below in dimensionless form with the displacement components 

normalized by the wavelength ℓ  but still expressed as 
i

u , q∆  is dimensionless and is 

unchanged, and the dimensionless coordinates are 1 2( , ) ( , )x y k x x=  such that xπ π− ≤ ≤ .  Recall 

that 2

0( / )( / )V hε µΩ = .  The functional for the neo-Hookean material with equi-biaxial pre-

stretch 0λ  and no surface energy is 

( ) ( ){

( ) }
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0
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where the Fourier coefficients of the dimensionless displacement components are 

 1 1

1 1 2 2( ) ( ,0)sin & ( ) ( ,0)cos
j j

u u x jx dx u u x jx dx
π π

π π
π π− −

− −
= =   

If similar procedures are followed for Problem II accounting for the fact that C  is the 

boundary at the bottom of the periodic sector between the two electrodes (see Fig. 6) and ε  is 

the permittivity of the medium above the elastomer layer, one finds the same result as in (ESM-

13) but with a sign change for the cubic terms.   It is easy to see this result in another way by 

noting that the electro-static energy contribution for Problem II with 1 1( ) ( )Y x Y x→ −  is identical 

to that of Problem I, assuming ε  is the same in both problems.  On the other hand, the 



transformation from Y  to 1u  and 2u  is the same for Problem II as I.  Thus, for Problem II the 

free energy functional is also (ESM-15), but with 1τ = − , and with ε  as the permittivity of the 

medium above the elastomer layer.   

As remarked earlier, the elastic energy contribution has not been approximated and the 

full incompressibility constraint is included enforced by the Lagrangian multiplier q∆ .  The 

contribution from the electro-static terms is accurate to order 
3

u .  As already noted, to order 
2

u  

there is no difference in the functionals for Problems I and II, and thus the critical bifurcation 

voltage, 
C

Ω  given by (E-23), i.e.,  

 
3 2

0

3 1

( 1)
C

p p p

p p λ

+ + −
Ω =

+
,  3

0p λ=       (ESM-16) 

is the same for the two problems, as are the eigenmodes.  Differences between the two problems 

emerge in the post-bifurcation range. 

 In the short wavelength limit we consider N  eigenmodes having the same critical 

eigenvalue 
C

Ω which are given by (for the dimensionless quantities) 

( )( ) ( ) ( ) ( )

1 2

1

( , , ) ( )sin , ( )cos , ( )cos
N

j j j j

j

u u q U y jx V y jx Q y jxξ
=

∆ =   (ESM-17) 

where the modes are normalized by requiring ( ) (0) 1j
V =  and ( )jξ  is the amplitude of the th

j  

mode.  For 0 1λ >  and with 3

0p λ= , we have from results given earlier that 

( ) ( )
( ) 2

( ) 2 ( ) 2

2 2

0

1 1 1
( 1) 2 , ( 1) 2 ,

1 1 2

j
j jy jpy j jy jpy jyQ p

U p e pe V p e e e
p p pπ λ

+
= − + + = + − = −

− −
   

It is useful to note that 
( ) ( )

1( ) (0)j j

j
u Uξ= , 

( ) ( ) ( )

2( ) (0)j j j

j
u Vξ ξ= =  and the result used in the 

transformation,  
( )

1 2( ) ( 1) / ( 1)( ) ( 1) / ( 1) j

j j
u p p u p p ξ= − − + = − − + . 

The initial post-bifurcation expansion with small initial imperfections 

 As discussed in Section 4.2 of the original paper, the analysis addresses a system with N  

linearly independent modes all of which have the same critical eigenvalue, 
C

Ω .  The abstract 

notation introduced in Section 4.2 is also used here and we pick up the development assuming 

(4.5) - (4.10) of the original paper and considering at first that no imperfections are present. 



If one substitutes the expansion (4.5) into ∆Ψ  in (4.6), making use of the various 

relations in (4.7) - (4.10), one obtains 

( )

( )

( )2 ( ) ( ) ( ) ( ) ( )
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( ) ( ) ( )
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The first two term on the second line vanish by orthogonality, while the last two are of order 4ξ  

and will be neglected.  Rendering ∆Ψ  stationary with respect to the mode amplitudes will 

generate set of equations relating Ω  to the mode amplitudes ξ  of the form ( )
C

O ξΩ = Ω + .  

Thus, to evaluate ∆Ψ to order 3ξ , the term 3GΩ  in (ESM-18)) can be replaced by 3C
GΩ .  With 

this replacement and retaining all terms to order 3ξ , (ESM-18) can be rewritten as 

 ( ) ( )2 ( ) ( ) ( ) ( ) ( )

2 3 3

1 1 1

( )
N N N

i i i i i i

C C

i i i

G u F u G uξ ξ ξ
= = =

   
∆Ψ = Ω − Ω + − Ω   

   
    (ESM-19) 

This can also be written as 

 ( ) ( )2 ( ) ( ) ( )

1 1 1 1

1 /
N N N N

i j m n

C i jmn

i j m n

c cξ ξ ξ ξ
= = = =

∆Ψ = − Ω Ω +     (ESM-20) 

where ( )

2 ( )i

i C
c G u= Ω  and the coefficients in the cubic term can be evaluated in terms of the 

eigenmodes using the cubic contributions in (ESM-19) without the need for solving for higher 

order terms.   

 The specific calculations in this paper will be calculated using the set of the first six 

simultaneous eigenmodes.  For 6N = , the non-zero terms in (ESM-20) can be expressed as 

(4.12) and repeated here including the lowest order contribution from the initial imperfection 

whose amplitude in the th
j  mode is denoted by ( )jξ  and which will be defined precisely later: 
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The coefficients 
j

a  are plotted in Fig. ESM-1 as a function pre-stretch for the range 01 3λ≤ ≤  

for Problems I and II.  The coefficients for the imperfection contributions 
j

a  are defined later. 

The values for no-pre-stretch can be computed using the eigenmodes in (ESM-17) for the limit 

0 1λ =  or to four place accuracy using (ESM-17) with 0 1.0001λ = .  For constructing the figures 

presented below these coefficients have been generated for each value of pre-stretch required.  

 

Fig. ESM-1.  The cubic coefficients 
j

a  for 1,9j =  ( 6N = ) as a function of pre-stretch for 

Problem I in a) and Problem II in b). 

 Stationarity of ∆Ψ  in (ESM-21) with respect to each of the mode amplitudes generates 

the set of six simultaneous initial post-bifurcation equilibrium equations: 
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(ESM-22)  

 For the perfect system ( ( )
0, 1,

j
j Nξ = = ), solutions have the form 

( ) (1 / )j

C j
zξ = − Ω Ω  

where the six simultaneous equations for the constants, 
j

z , 1,6j =  are 
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+
    (ESM-23) 

Solutions to the six simultaneous algebraic equations (ESM-23) presented here using the ISML 

subroutine DNEQNF (Visual Numerics, 1994) with an initial guess that takes 1z  and 2z  as the 

only non-zero values with 1 12 /z a= −  and 2 11/z a= − .  The normal displacement to the surface 

in the initial post-bifurcation response is given by (in dimensional form) 

 ( )2 1 1

1

( ,0) / ! / cos( )
N

C j

j

u x z jkx
=

= − Ω Ω ℓ  with  ( )2

1

(0,0) / ! /
N

C j

j

u z
=

= − Ω Ω ℓ (ESM-24)  

Plots of the maximum downward deflection of the layer surface, 2 (0,0) /u− ℓ , as dependent on 

/
C

Ω Ω  from this formula are for increasing levels of pre-stretch in Fig. E-4a.   

 The relation connecting the electrical charge, c , voltage, 0V , capacitance, C , and 

electrical energy, 
electrical

U , is 

 2

0 0

1 1

2 2
electric

U cV CV= =  

For Problem I, for a section of the dielectric elastomer of initial length ℓ , height h  and unit 

depth, the electrical energy is given by 
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01

2
electric electric

V
U h U

h
ε
 

= + ∆ 
 

ℓ  

Evaluating 
electric

U∆  using (ESM-14) with 
( ) (1 / )j

C j
zξ = − Ω Ω  gives 
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where  
2

2
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N
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j

s jz
=

=  and 

 ( )3

1 1 1

2 ( ) 2[( 1) / ( 1)]jmi jmi jmi j m i

j m i
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= = =


 = − − − − +  


  

With 0 /C hε= ℓ  as the capacitance of the uniform section and 2

02 /
electric

C U V=  as the 

capacitance in the bifurcated state, 
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accurate to order 3

0 0(1 / )C
V V− .  This relation is plotted for seven values of 0λ  in Fig. E4b for 

/ 1h =ℓ .  Finally, with 0 0

C

C
c C V=  as the electric charge at bifurcation, the relation between the 

charge and the voltage in the initial post-bifurcation range, 0c CV= , is given by 

 ( )2 30 0
2 0 0 2 3 0 0

0 0 0

1 2 (1 / ) ( 4 8 )(1 / )C C

C C

C

V Vc C
s V V s s V V

c C V h V
π

 
= = + − + − + − 
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This relation is plotted for the same seven values of pre-stretch in Fig. E4c.  With no pre-stretch, 

or relatively small pre-stretch, bifurcation is highly unstable under either prescribed voltage or 

charge.  For increased levels pre-stretch above about 0 2λ =  the initial post-bifurcation response 

falls much less dramatically.   

 The results for Problem I presented above were computed using 1τ = .  For Problem II 

the formulas presented above apply with 1τ = − .  Fig. ESM -2 below presents the corresponding 

results to those just discussed for Problem II.  The two sets of results differ in two important 

respects.  First, the maximum amplitude of the surface deflection is downward in Problem I 

while it is upward in Problem II, in each case the deformation acts to bring the two electrode 

surfaces closer together subject to the incompressibility constraint.  The second important 

difference between the two problems is that pre-stretch over the range 01 2.5λ≤ ≤  reduces the 



severity of the instability in Problem I, while the severity of instability is somewhat increased for 

Problem II.  The difference in the severity of the instability between the two problems is seen in 

the imperfection-sensitivity dependence on pre-stretch in Fig. ESM-3 for an perturbing force 

imperfection with amplitude 1ξ  defined in the last sub-section just below. The maximum 

voltage, 0 max( )V , the system can sustain prior to instability normalized by the maximum for the 

perfect system (the bifurcation volage), 0

C
V , is plotted as a function of pre-stretch for two 

imperfection levels.  The role of pre-stretch on the layer nonlinearity in enhancing the instability 

of upward ridge-like modes and suppressing the instability of downward crease-like modes has 

been discussed by Zang et al. (2012) and Hutchinson (2013). 

 

Fig. ESM-2  The influence of pre-stretch, 0λ , on the initial post-bifurcation behavior of the 

constrained incompressible layer for Problem II.  a) Voltage versus amplitude of the surface 

bifurcation deflection. b) Ratio of the capacitance in the initial post-bifurcation regime to the 

capacitance of the uniform layer. c) Voltage versus electrical charge in the initial post-bifurcation 

regime.  These plots were computed using 6 modes; plots b) and c) were computed with / 1h =ℓ . 

 

 



 

Fig. ESM-3  Imperfection-sensitivity of maximum voltage as a function of pre-stretch for 

Problem I in a) and for Problem II in b) for a perturbing force imperfection with amplitude (1)ξ .  

  

Geometric and perturbing force imperfections in shape of surface modes:  

Geometric imperfections with no pre-stretch 

 The reader is referred to Cao and Hutchinson (2012) for a systematic derivation of the 

modification of the energy functional that accounts for an initial stress-free surface undulation of 

the type considered here when there is no pre-stretch.  The imperfection from (4.13) is  

 2 1 1

1

( ,0) cos(2 / )
N

G

i

i

u x ixξ π
=

= ℓ ℓ       (ESM-25) 

In the absence of pre-stretch, the lowest order contribution to the terms in the energy functional 

∆Ψ  that are independent of Ω  are of order 2ξ ξ  which are neglected compared to the 

contributions from the terms in ∆Ψ  which are linear in Ω  and quadratic in u . These are of.  The 

lowest order contributions, which are of order ξξ , can be obtained directly using terms quadratic 

in u  and linear in Ω  in either (4.1) or (4.4) by substituting 
( )

2 2

1

( )
N

j

j j

j

u uξ ξ
=

= +  into these 

expressions.  The terms quadratic in ξ  can be ignored because they do not contribute to the 



variational equation.  The lowest order imperfections terms are those of form ξξΩ .  

Alternatively, substitute 2u  into 2 ( )G u−Ω  in (4.16), disregarding 2 ( )G u−Ω  which does not 

contribute to the variational equations, to obtain the additional term in (4.16): 

( ) 2

11

1 1

2 ( , )
N N

j G

C j C j j

j j

G u u jξ πµ ξ ξ
= =

− Ω = − Ω ℓ     (ESM-26) 

and, thus for the geometric imperfection, 2
j

a j= − . 

 The error in the bifurcation result has some influence on the results presented in the 

original paper for Problems I and II with imperfections and no pre-stretch, but the influence is 

relatively minor.  Qualitatively, the discussion of role of the geometric imperfections in the 

original paper still holds and will not be revised.  The main conclusion is that Problem I involves 

surface deformations of the layer which are folds, or open crease-like modes, which probe 

downward towards the other electrode.  For Problem II, the surface deformation is a ridge-like 

mode which is pulled toward the electrode above.  With no pre-stretch, both problems are 

strongly sensitive to geometric imperfections. 

Perturbing force imperfections with or without pre-stretch 

 Identifying the contribution of the perturbing force/area distribution introduced in (4.15) 

to the energy functional ∆Ψ  is more straightforward than that for geometric imperfections.  The 

perturbing force/area distribution on the top surface of the layer, 1( )p x , is regarded as prescribed 

and periodic with wavelength ℓ .  Thus, the potential energy contribution of the perturbing force 

imperfection to the periodic sector under consideration is 
/2

1 2 1 1
/2

( ) ( ,0)U p x u x dx
−

∆ = −
ℓ

ℓ

.  With 

imperfection amplitudes ( )jξ  and 
( )

1 1

1

( ) cos( )
N

j

j

p x jkxµ ξ
=

=  , the lowest order potential energy 

contribution due to the imperfection is  

 
( ) ( ) ( ) ( )

2
1 1

1

/ 2

N N
j j j j

j

j jC C

U
aξ ξ ξ ξ

π µ π = =

∆
= − ≡

Ω Ω
 

ℓ
 

and this is the contribution included in ESM-21. 
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